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Figure 4-11 Regions where Dupuit assumptions are not valid.

neglected, before applying the Dupuit assumptions. Another case to which the
Dupuit assumptions should be applied with care is that of unsteady flow in a
decaying phreatic surface mound. Although no accretion takes place, yet at, and
in the vicinity of, the crest the flow is vertically downward. At a distance of say
L5 — 2 times the thickness of the flow, the approximation of vertical equi-
potentials is again valid.

In spite of what was said above, in regional studies, the Dupuit assumptions,
because of their simplicity and the relatively small error involved, are usually
applied also to those (relatively small) parts of an investigated region where they
are not strictly applicable. One should, however, be careful in making use of results
(say, water levels) derived for these parts of an investigated region.

CHAPTER

FIVE

MATHEMATICAL STATEMENT OF THE
GROUNDWATER FORECASTING PROBLEM

The basic laws governing the flow of water in confined and phreatic aquifers are
presented in the previous section. However, if we observe (4-9) closely, we notice
that we actually have here one equation with two dependent variables: q(x. y, z. 1)
and ¢(x, y, z,1), or three equations in four unknowns ¢, q,, g,, q., if we refer to
components of q. This means that one additional equation is required in order
to obtain a complete description of the flow regime in an aquifer. Similarly, we have
Q'(x.y,t) and ¢(x, y, 1) in the single equation (4-27) and Q'(x, y,¢) and h(x, y.1)
in the single equation (4-57). The additional basic law that we have to invoke is
that of conservation of matter, or mass, which here takes the form of a continuity
equation.

One should not be surprised that in Sec. 4-5 we did succeed in solving (4-57)
for some simple cases. We actually used there the equation of continuity, which
in that case took the simple form of Q' = const.

Our objective in what follows is to develop the continuity equations for
different types ol aquifers. The distribution of ¢ = ¢(x, f) in an aquifer is obtained
by solving these equations, subject to appropriate boundary and initial condi-
tions.

We shall first consider the basic equations and boundary conditions for
three-dimensional flows. Then, the equations for flow in aquifers will be developed
for confined, leaky, and phreatic aquifers. We shall derive these (integrated, or
averaged) aquifer equations in two ways. First, by merely assuming that the flow
in an aquifer is essentially horizontal (see Secs 4-3 and 4-5), and writing a balance
for a control volume which has the height of the saturated flow domain in the
aquifer, and secondly, by integrating the point continuity equation over the
vertical height of the aquifer. In this way, the conditions on the confined, leaky,
or phreatic, upper and lower boundaries of the aquifers will be incorporated in
the resulting integrated equations. It will be of interest to note that although the
latter method is more rigorous, the results are identical.
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84 HYDRAULICS OF GROUNDWATER

With the material presented in this section, one should be able to state
mathematically any groundwater flow problem. The problem of the movement
of pollutants dissolved in the water is discussed in Chap. 7.

The determination of the future distribution of piezometric heads ¢ =
¢(x, 1), is, in fact, the solution to the groundwater forecasting problem referred
to in Chap. 1. We are looking for future piezometric heads, or water levels, pro-
duced in a given (by geometry and properties) aquifer by any planned schedule
of future pumping and artificial recharge activities and anticipated natural

replenishment.

5-1 AQUIFER STORATIVITY

Specific Storativity

Let us start by introducing the concept of effective stress (or intergranular stress),

first introduced by Terzaghi (1925). _ o
Figure 5-1a shows a cross section through a confined aquifer. To simplify

the discussion, we shall consider a granular non-cohesive matrix with grain sizes
such that molecular and interparticle forces are negligible. Figure 5-1b shows the
details at any internal horizontal elemental plane AB in an aquifer, whether con-
fined or phreatic; it is also valid for an elemental surface of the impervious ceiling
of an aquifer (4'B’).

The total load of soil and water (and actually also everything that adds load
at the ground surface, including atmospheric pressure) above the considered
plane is balanced by a stress (force per unit area) ¢’ in the solid matrix and by a
pressure p in the water (Fig. 5-1b)

c=0 +p (5-1)
where o is the total stress resulting from the overburden load. Each of the three

terms appearing in (5-1) is a force divided by the total area, 4, of the considered
plane. Strictly speaking, we should have taken into account the fact that whereas
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Figure 5-1 Pressure and intergranular stress in an aquifer.
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o acts over the entire area under consideration, the water pressure acts only over
part of 4 and so does the force carried by the solid matrix. Nevertheless, it can
be shown (e.g., Lambe and Whitman, 1969; Bear, 1972, p. 54) that the effective
stress o', as defined above, is a good approximation of the stress transmitted
through the skeleton (and hence it is also called intergranular stress), and that
we may assume that indeed p acts over the entire area A. In (5-1), positive ¢ and
¢’ denote compression.

Equation (5-1) is derived by considering vertical forces only. However, the
discussion can be extended to the general case of three-dimensional space (e.g.,
Bear, 1972, p. 55; Verruijt, 1965, 1969).

When changes in the overburden load take place, changes will be produced
alsoing and p

de = do’ + dp (5-2)

If we keep ¢ = const., but change the pressure, for example by pumping from the
aquifer, or by artificially recharging it, we have

do =0 = do’ + dp, do’ = —dp (5-3)

which means that a corresponding change is produced in the intergranular stress.
Thus, a reduction of water pressure by pumping from a well results in an increase
in the load borne by the solid skeleton of the aquifer.

Now, the water in the aquifer is compressible. Although this compressibility
is small, it plays an important role mainly in confined aquifers. We define a co-
efficient of compressibility of water, 3, by
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where U, and p are volume and density, respectively, of a given mass of water
subjected to pressure changes. The minus sign indicates a decrease in volume
as pressure increases. For f independent of pressure, we obtain from (5-4)

Uy = Usoexp[—=B(p —po)]:  p = poexp[Bl(p — po)] (5-5)

where U, and p, correspond to the reference pressure p,.

The solid matrix of the aquifer is elastic and not rigid. By subjecting it to a
change in the intergranular stress, it will undergo deformation. This deformation
involves a movement of the solid, or the solid particles and their rearrangement,
such that the porosity of the porous medium is changed. We assume that the
elasticity of the solid or the solid particles is much smaller (relative to the solid
matrix as a whole), so that their volume remains unchanged.

The elastic property of the solid matrix is expressed by its coefficient of
compressibility, «, defined by

B= (5-4)

LA
o= — (5-6)

Ub aﬂ"

where U, is the bulk volume of a porous medium. As emphasized above, we are
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considering here only vertical compressibility, the lateral deformation in the
aquifer is assumed negligible.
Since the volume of solids U, in U, remains constant, we have
au Léu, 1 on
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U, =(l — n) U, = const.;
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which relates « to the changes in porosity, n, resulting from changes in water
pressure.

Consider now the vicinity of a point in an aquifer, where water pressure is
reduced by pumping. As indicated by (5-3), this results in an increase in the inter-
granular stress transmitted by the solid skeleton of the aquifer. This, in turn,
causes the aquifer to be compacted, reducing its porosity. At the same time, as
a result of pressure reduction, the water will expand according to (5-4). Together,
the two effects—the slight expansion of water and the small reduction in poros-
ity—cause a certain amount of water to be released from storage in an aquifer.
Thus, by releasing water from storage in an aquifer, we produce in it a reduction
in water pressure. Conversely, in response to adding water to a unit volume of
aquifer, the pressure in it will rise, accompanied by a reduction in the inter-
granular stress, which, in turn, increases the porosity. If we assume both water
and solid matrix to be perfectly elastic, within the range of the considered changes,
the two processes are reversible. In reality, however, changes in a granular matrix
are irreversible (see Sec. 5-11).

Based on the above considerations, we can now define a specific storativity,
Sop, of the porous medium of an aquifer as the volume of water released from
storage (or added to it) in a unit volume of aquifer per unit decline (or rise) in
pressure

Sop = AU, /U Ap (5-8)
or, per unit change in the piezometric head ¢* (defined by (4-4))
So = Sope = AU,/U,Ad* (5-9)

Sg has the dimensions of L', From (5-9) it follows that by adding a volume AU,
to a volume U, of aquifer, the piezometric head there will rise by A¢* = AU,/ U,S,.

One should note that Sy, and Sy, are actually defined by (5-8) and (5-9),
respectively, without analyzing their internal relationship to the compressibilities
of water and solid matrix.

Aquifer Storativity

In a similar way we can define a storativity for a confined aquifer, S, as the
volume of water released from storage (or added to it) per unit horizontal area
of aquifer and per unit decline (or rise) of piezometric head, ¢

S = AU, /AA¢ (5-10)
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S is dimensionless. The reasons for the relationship between the amount of water
released and the change of head are now obvious. The volume of aquifer from
which water is released is 4 x B, where 4 is horizontal area and B is the thickness
of the confined aquifer (Fig. 5-2).

It is important to understand that like T, S is an aquifer property. If we work
under the assumption of essentially horizontal flow in an aquifer (Sec. 2-4), we
should use the parameters T and S. If, however, we wish to consider three-di-
mensional flow in an aquifer, we should use the parameters K and So. Although
it is possible to relate K to T by T = KB and So to § by § = S,B, one should avoid
mixing the two concepts, as in principle they are related to two different flow
models.

We can also define a storage coefficient for a phreatic aquifer. Consider a
unit (horizontal) area of a phreatic aquifer. The volume of water stored in a
phreatic aquifer is indicated by the water table (see Sec. 5-4). If, as a result of the
flow in the aquifer, a volume of water will leave this area in excess of the volume
of water entering it, the water table will drop. We may define the Storativity of a
phreatic aquifer in the same way as we defined above the storativity of a confined
aquifer, except that here the drop, Ah, is of the water table (Fig. 5-3)

S = AU, /AAh (5-11)

In spite of the similarity in the definition, the storativity in the two types of
aquifer is due to different reasons. In a confined aquiler, it is the outcome of
water and matrix compressibility. In a phreatic aquifer, water is mostly drained
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Figure 5-2 Definition sketch for stor-
ativity in a confined aquifer.
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Figure 5-3 Definition sketch for stor-
ativity in a phreatic aquifer.
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from the volume of pore space between the two positions of the phreatic surface.
The storativity of a phreatic aquifer is, therefore, sometimes referred to as specific
yield, S,; it gives the yield of an aquifer per unit area and unit drop of the water
table (see further discussion in Sec. 6-1).

Recalling that actually the water table is an approximate concept, we under-
stand that water is actually being drained from the entire column of soil up to the
ground surface. Bear (1972, p. 485) shows that when the soil is homogeneous and
the fluctuating water table is sufficiently deep, the above definition for specific
yield still holds (see Sec. 6-1).

One should be careful not to identify the specific yield with the porosity of
a phreatic aquifer. As water is being drained from the interstices of the soil, the
drainage is never a complete one. A certain amount of water is retained in the
soil against gravity by capillary forces. After drainage has stopped, the volume
of water retained in an aquifer per unit (horizontal) area and unit drop of the
water table is called specific retention, S,. Thus

S;+S,=n (5-12)

For this reason S, (<n) is sometimes called effective porosity. Here, again, one
should note that we have been referring to the approximate concept of a water
table. However, for a homogeneous soil and a sufficiently deep water table, the
above definition for S, holds (see Sec. 6-1).

Figure 5-4 shows the relationships between S,, S,, and particle size.

When drainage occurs, it takes time for the water to flow, partly under
unsaturated flow conditions, out of the soil volume between two positions of a
water table, at  and at t + Ar. This is especially true if the lowering of the water
table is rapid. Under such conditions, the specific yield becomes time dependent,
gradually approaching its ultimate value (Fig. 5-5). When the water level is rising
or falling slowly, the changes in moisture distribution have time to adjust con-
tinuously and the time lag vanishes. This phenomenon of time dependency of the
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Time Figure 5-5 Time-dependent specific yield.

specific yield should not be overlooked in the analysis of pumping tests. water
balances for short periods, etc. (see Neuman, 1972).

When the water table is lowered, the pressure drops throughout the aquifer
below it. In principle, this pressure drop should cause water to be released from
storage in the aquifer, due to the elastic properties of the aquifer and the water.
However, when we calculate the total volume of water released from storage in
the aquifer per unit area and unit decline of head: (AU,,), = Syh due to the elastic
storage and (AU,), = §, due to the actual drainage of water from the pore space,
we have Soh << §, so that (AU,,), can be neglected (see further discussion on this
point in Sec. 5-2).

Typical values of S in a confined aquifer are of the order of 107%-10"6,
roughly 40 percent of which result from the expansion of the water and 60 percent
from the compression of the medium. In a sandy phreatic aquifer, we may have
So of the order 1077 cm™?, whereas S, may be 20-30 percent (see Fig. 5-4).

We shall return to the definition of aquifer storativity, both for a confined
aquifer and for a phreatic one, in Sec. 5-2 where the aquifer equations will be de-
rived by averaging the three-dimensional flow equations along the vertical.

5-2 BASIC CONTINUITY EQUATION

Mass Conservation Equation

In this section, we shall develop the basic equation describing three-dimen-
sion flow in a porous medium. One way of deriving the basic mass balance equa-
tion is given in App. A-6, leading to (A-24)

Oe) _ _ awig (5-13)

Nevertheless, let us derive this equation by using more elementary considerations.

Consider a control volume (or control box) having the shape of a rectangular
parallel-piped box of dimensions dx, dy, dz centered at some point P(x,y, z)
inside the flow domain in an aquifer (Figs. 5-1 and 5-6). A control box may have
any arbitrary shape, but once its shape and position in space have been fixed,
they remain unchanged during the flow, although the amount and identity of
the material in it may change with time. In the present analysis, water and solids



