
CHAPTER 3

Classical calibration procedures

I argued in the introduction that calibration and uncertainty estimation are
closely connected. Conceptual model construction and parameterisation are usu-
ally founded on a very weak data base. Values derived from literature and from
personal experience may narrow the range of possible conceptual models and
values of parameters and variables. Nevertheless, the variety of solutions may
still be too large to provide acceptable predictions.

Calibration is the process of rating different alternative sets of conceptual mod-
els, parameters and variables according to the degree of fit between simulation
and observations. Classical calibration procedures aim to find a single unique
parameter set that corresponds to the global optimum with regard to the degree
of fit.

The parameter estimating problem has traditionally been solved by trial-and-
error techniques, with the hydrologist successively changing the unknowns until
he/she believes that the solution is close to the optimal. For large complex
models with many unknowns this trial-and-error calibration procedure is very
difficult and time consuming. With the constant increase in computer power, a
range of automatical calibration techniques becomes more and more interesting.

This chapter gives an introduction to objective functions within standard cal-
ibration procedures as well as to the statistics of calibrated parameters and
predicted state variables. The issue of single versus multi-objective function is
briefly discussed.

First, however, I look at the issue of parameterisation and the different types of
observation data that can be used. The concept of ill-posedness is defined and
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CHAPTER 3. CLASSICAL CALIBRATION PROCEDURES

model non-linearity is discussed.

3.1 Parameterisation

In distributed physically-based groundwater models the domain under consider-
ation is discretised into a finite number of elements/cells, each of which has an
individual set of parameters - i.e. sub-surface cells have hydraulic conductivities
in three directions, a storage coefficient, effective porosity, sink/source term, etc.

Parameterisation concerns the assignment of values to these parameters. In most
model applications the scale of parameterisation is larger than the scale of the
numerical cells, i.e. parameters are assumed to be constant within regions/zones
that are larger than the cell scale. In relation to calibration and uncertainty
estimation the issue of parameterisation is very important.

3.1.1 The continuum approach

The continuum approach is fundamental in groundwater modelling and intro-
duces the first set of restrictions at the level of parameterisation. The flow
process on the molecular/microscopic scale, Fig. 3.1, is very complicated and in
practice inaccessible. First, it is impossible to determine the exact geometry of
the soil under consideration and, secondly, it is impossible to solve the flow equa-
tions for the volumes normally considered in groundwater modelling problems.
Using a cylindrical pipe for stationary flow, Henry Darcy found by experiment
a linear relation between the head gradient and the flow.

q =
Q

A
= −∆ψ

∆L
K (3.1)

where q is the Darcy or filter velocity, ∆ψ is the head difference over the soil
sample, ∆L is the length of the soil sample, A is the cross section area of the
soil sample (similar to the pipe cross section area) and K is the proportional
constant or hydraulic conductivity.

Darcy’s law is based on a macroscopic scale and builds on the continuum ap-
proach, where the porous media are considered as a continuum for which rep-
resentative average parameters can be found. By introducing Darcy’s law we
are prevented from describing flow on anything smaller than the macroscopic
scale. For many problems the macroscopic scale is sufficient, but when it comes
to considering transport processes the flow on the microscopic scale cannot be
ignored because of the high degree of variation in the size of pore velocities. In
order to compensate for the unknown variation of flow velocities and directions
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3.1. PARAMETERISATION

Figure 3.1: Definition of scales.

on the microscopic scale it is essential when modelling transport processes to
introduce a dispersion process.

3.1.2 Parameter scale

Darcy’s law is the foundation for describing laminar flow in porous media. It is
used directly in the derivation of the governing equations for groundwater flow,
and in the laboratory for estimating the flow properties of a given soil sample.
Darcy’s law combined with a mass balance equation, together with the relevant
dispersion relations, constitute the governing equations on a macroscopic scale.
It is thus straightforward to discretise and solve the equations with related pa-
rameters on this scale. However, in most cases the discretisation scale is much
coarser than the macroscopic scale, and there is no guarantee that parameter
values on the measured scale are representative of the model scale. The term
“effective parameter” is often used for parameters on the model scale, to sug-
gest the fact that the parameters have no direct physical meaning. Figure 3.2
illustrates the typical evolution in a given parameter as a function of averaging
volume. It can be seen that a number of different Representative Elementary
Volumes (R.E.V.) can be found, depending on the scale under consideration.

In principle measured parameters can be used in the governing equations only
on the scale on which they are found. So the question is: is the scale on which
parameters are measured identical with the scale of the numerical models applied
to a given problem? There is no general answer to this question, but in most
cases the answer is negative.
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Figure 3.2: Parameter value versus averaging volume.

Figure 3.3 is an attempt to illustrate the parameter scale in relation to the
method of measurement and the scale of application, which depends on which
type of model is used.
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Figure 3.3: Measurement and application scales.

Geophysical measurements are in general used only to identify geological units,
and it is very difficult to use them as the basis for estimating hydrogeological
parameters. So long as interpretative assumptions are fulfilled, pumping tests are
cabable of predicting aquifer properties on the megascopic and regional scales.
Laboratory tests are typically performed on the macroscopic scale, and in the
case of undisturbed soil samples the test might give a good estimate of parameter
properties on the given scale.

From Figure 3.3 it can be seen that only geophysical measurements seem to
have the scale on which 3D groundwater models are normally applied. Given
the above mentioned limitations of geophysical measurements, no method of
measurement is suited to giving precise parameter estimates on the megascopic
scale on which 3D groundwater models are normally implemented.

34
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Thus on the one hand the various methods of measurement may not yield precise
parameter estimates while, on the other, the results may substantially reduce the
possible parameter range.

3.2 Observation data

Calibration is performed with respect to past system behaviour. System be-
haviour is typically described by observations in time and space e.g. of water
level, head potential and river discharge. But in principle all observations that in
some way condition the parameter estimates are valuable. This section describes
the different types of observations that can be incorporated into a calibration
procedure and, where possible, the sources of mismatch between observed and
computed values are described.

3.2.1 Head data

Head and water level observations originate from at least three types of surveys:
a) logging in connection to newly established wells, b) more or less continuous
logging of existing wells and c) synchronous observations of a large number of
wells.

A mismatch between calculated and observed head data may originate from at
least three sources: 1) observation errors, 2) scale errors and 3) errors due to
time effects. The following description is inspired by Sonnenborg (2001).

Observations errors: The head observation errors in this description consist of
errors directly associated with measurement, rather than all sources of mismatch
between computed and observed heads, such as may be found in other literature.
The contributions to head observation errors are:

• Finite precision of the measuring equipment. The expected error contri-
bution is in the range of a few millimetres to a few centimetres.

• Manual reading of instruments and registration of the results. The ex-
pected error contribution is in the range of a few millimetres to a few
centimetres.

• Incorrect or imprecise well reference level. References levels may be deter-
mined with considerable accuracy by using a levelling instrument or GPS.
In this case the error contribution is typically in the range of a few mil-
limetres to a few centimetres. Alternatively the reference level may be
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determined from topographical maps and the error contribution may be
several metres, depending of the quality and resolution of the maps.

• Atmospheric pressure. Head potential in confined aquifers fluctuates in
proportion to fluctuations in the atmospheric pressure. The atmospheric
pressure fluctuations are rarely taken into account in groundwater models
and may lead to an error contribution of up to 0.1 m. The change in
potential head due to a change in atmospheric pressure can be estimated
from

ψ − ψ0 = −BE
γ

(pa − pa0) (3.2)

where γ [kg m s−2 m−3] is the gravitational body force, BE is the baro-
metric efficiency defined as the ratio of water level change, (ψ−ψ0) [m], to
the atmospheric pressure, (pa − pa0) [bar]. BE has been observed in the
range of 0.25 to 0.75. (Bear 1972).

A pressure difference of 20 mb (the passage of a storm depression) and a
barometric efficiency of 0.5 yield a water level change of ∼ 0.1 m.

Scale errors: Scale errors originate partly from the finite discretisation of the
computational cells and partly from the discretisation of the parameters involved.
The main contributions to scale errors are:

• Horizontal discretisation. Head values are calculated at the centre of each
computational cell and the observed heads may be located anywhere in
the computational cell. A comparison of observed heads with the nearest
calculated head value may result in an error contribution up to 0.5Jdx,
where J is the horizontal gradient of the hydraulic head and dx is the size
of the computational cell. If the computed head is interpolated into the
location of the observed head the error contribution is significantly smaller.

• Vertical discretisation. Observed head values are representative of head
values ranging from the minimum to the maximum head in the filter sec-
tion. Typically the head in the high yield formations in a filter section will
have a strong influence on what is measured. Simulated heads are average
head in the computational layer. Given that the filter section is identical
with the computational layer, the maximum error contribution is of the
magnitude 0.5Jvdz, where Jv is the vertical hydraulic gradient over the fil-
ter section, and dz is the computational layer thickness. Filter information
may in many cases be incomplete and discussions as to which geological
unit has actually been measured may occur. The error contribution arising
from an imperfect match between filter levels and computational layers is
difficult to quantify, since information on vertical gradients is rare. The
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error contribution from monitoring the wrong geological unit (e.g. moni-
toring the secondary aquifer believing that is is the primary aquifer) may
be up to several metres.

• Topographical variations. Topographical variations within a computa-
tional cell may result in variations in the potential head that will not be
represented by the numerical model. The error contributions may be sig-
nificant in near-surface reservoirs, and can be assumed to be proportional
to the topographical variations, and inversely proportional to the depth
below ground surface (Sonnenborg 2001).

• Hydrogeological heterogeneity. Parameter heterogeneity cannot be resolved
at a finer scale than the resolution of the numerical grid. Usually hetero-
geneity within a geological unit is ignored and the parameters are constants
within regions much larger than the grid. The ignored heterogeneity will
contribute to the error between computed and observed heads where the
standard error, sh, may be formulated as a function of the hydraulic gradi-
ent J , the standard deviation of the log-transformed (natural) hydrological
conductivity, σlnK , and the length scale, αl. The error contribution may
be approximated as (Gelhar 1986).

sh =

√
1
3
J2σ2

lnKα
2
l (3.3)

The length scale, α should be chosen as the minimum of: a) the correlation
length of the conductivity field, b) extension of the region with constant
parameters. In the case of fully distributed parameters (with a different
value in each cell) the grid dimension should be used.

Errors due to hydrogeological heterogeneity may alternatively be approxi-
mated from head observation in closely positioned wells. The difference in
observed heads, subtracting all other sources of error, may represent the
errors due to hydrogeological heterogeneity (Sonnenborg 2001).

Errors due to time effects: The number of head observations in time and
space is often limited, and all available observations have to be used. Typically
the set of chosen head observations is a mixture of equidistant time series, non-
equidistant time series (few observations) and single observations. The data
set may be incomplete in a variety of ways, and this may contribute to error.
The description below focuses on the error contribution in relation to stationary
models.

In stationary models time-average head conditions are simulated, and present
head observations may not represent stationary conditions. This may lead to
errors. The size of these errors can be approximated by analysing the time series
for neighbouring wells. The aim of this analysis is to establish yearly fluctuations
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and trends, seasonal fluctuations and more rapid fluctuations. Yearly fluctua-
tions and trends represent errors due to adapting head data from one year in
the calibration of another year. Seasonal fluctuations represent the errors arising
from presenting a seasonal representative observation as the average yearly head.
The rapid fluctuations represent errors due to ignored small time-scale variations
e.g. in infiltration and abstraction. Useful statistics could be: a) average weekly
standard deviation of daily values, b) average seasonal standard deviation of
weekly averages, c) average yearly standard deviation of seasonal averages, d)
trends in yearly average. Sonnenborg (2001) has suggested ∆H/2, where ∆H is
the difference between the minimum and maximum value in the time series, as
a simple measure of the error contribution.

Table 3.1 summarises the different contributions to the mismatch between ob-
served and computer head. Values and intervals are approximate and based on
Danish conditions.

Table 3.1: Standard deviation of error contributions. Inspired by Sonnenborg (2001)

Error contribution Standard deviation [m] Reference

Observation error Measuring equipment 0.03

Reading and bookkeeping 0.05

Reference level 0.05 - 2.0

Atmospheric pressure 0.0 - 0.15

Scale error Horizontal discretisation 0.5∆xJ 1) Sonnenborg 2001

Vertical discretisation 0.5Jvdz − 2.0 2)

Topographical variations σtopo/d
3) Sonnenborg 2001

Heterogeneity
√

1
3J

2σ2
lnKα

2
l

4)
Gelhar 1986

Time effects Non-stationarity ∆H/2 5) Sonnenborg 2001

Total error
√∑

σ2

1. ∆x is the horizontal discretisation and J is the hydraulic gradient.

2. ∆y is the vertical discretisation and Jv is the vertical gradient.

3. σtopo is the standard deviation of the topography within a computational grid. d is the depth
from ground surface to groundwater.

4. σln K is the standard deviation of the log-transformed (natural) hydrological conductivity. α
is the minimum of the correlation length for lnK and extension of the region with constant
parameters.

5. ∆H is the difference between the minimum and maximum value in the time series.
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3.2.2 River discharges

Measurements of river discharge are regularly carried out in major streams and
rivers. This is done by measuring water levels and deriving the actual flow from
these measurements, using a mathematical relation between water level and flow
(Q-ψ relation). These point flow velocity measurements are then transformed
into discharges. The observation data originate from a number of continuously
logged gauging stations and/or from synchronous measurements of the flow in a
large number of cross sections.

As in the case of head data, the mismatch between calculated and observed river
discharges may originate from observation errors, scale errors and errors due to
time effects.

Observation errors: Observation errors originate from the registration of water
levels, the registration of flow velocities and the subsequent transformation of
these measurements into discharges.

• Discharge derived from water level registration. Water level measurements
are transformed into discharges by using a Q-ψ relation, describing the re-
lationship between water level and discharge. The Q-ψ relation for a given
cross section is dynamic and will change with the amount of vegetation
and possible erosion. The uncertainty of the discharge estimate is in the
order of 10% (Blicher 1991).

• Discharge derived from flow velocity measurements. When discharge is
estimated from a number of point velocity measurements in well defined
cross sections, the level of uncertainty is relatively low, probably in the
order of 5%.

Scale errors: Scale errors in relation to river modelling are closely related to
numerical and parameter discretisation.

• The level of detail. The level of detail at which the geometry of a river can
be described depends on numerical discritisation. River branches smaller
than grid dimension cannot be described.

• Topographical variations. The interaction between river and groundwa-
ter may depend to a considerable degree on small-scale variations in the
topography: e.g. seepage flow in local topographical depressions.

• Hydrogeological heterogeneity. Small-scale heterogeneity may be deter-
mined for the interaction between groundwater and river.
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Definitions

Median value of annual minimum flow is the daily median value of the annual
minimum flow.

Error due to time effects: Synchronous observations of summer discharge are
performed for the purpose of estimating the base flow contribution to the river.
The results may be converted to another year or years from a reference gauging
point, on the assumption that the synchronous observation points behave in
the same manner as the reference station. Errors may occur, depending on the
degree to which this assumption is fulfilled. (Sonnenborg 2001)

Time series data are used to estimate the median value of annual minimum flow.
Bjarnov (1987) has established the relation between base flow, qb [l/s/km2],
and the standard deviation on the median value of annual minimum flow, sqb

[l/s/km2] reported in Fig. 3.4, for ten Danish stationary gauging stations.

0 1 2 3 4 5 6 7 8

0.00

0.25

0.50

0.75

1.00

1.25

1.50

q
b

[l/s/km
2
]

V
b

=
s

b
/q

b
[-

]

Figure 3.4: Relation between the median value of annual minimum flow,
q, and the coefficient of variation of the median value of
annual minimum flow, sq for 10 Danish stationary gauging
stations. Estimation based on a 65-year time series

3.2.3 Concentration data

Concentration data are available from regular testing in abstraction wells and
from surveys of polluted sites. Concentration data can be valuable as tracer
data in cases where the source and leakage period are known, for example in the
case of gasoline pollutions with MTBE spill. MTBE was added to gasoline in
the mid-eighties and the source location is often well described. The calibration
of concentration levels from point pollutions is in general associated with large
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errors due to: 1) the density of the concentration data in time and space in
comparison with the extension of the pollution, 2) great uncertainty in the de-
scription of degradation and sorption, 3) hydrological heterogeneity. The effects
of 1) and 3) may be averaged out if area sources, such as nitrate or pesticides,
are considered.

3.2.4 Tracer data (natural and artificial)

Natural tracer data such as CFC gas may be very useful in determining ground-
water age. The uncertainty of the age estimate depends on the degree of mixture.
The water in abstraction wells is typically a mixture of water from large regions
with different travel time, and for this reason estimates of its age may be very
uncertain. In observation wells with narrow filter intervals one can assume a
lower level of uncertainty, since the only mixture to occur here is natural.

Because groundwater motion is usually slow, artificial tracers are often used
over short distances, normally in order to constrain the flow velocities in a given
deposit. The uncertainty of flow velocity estimates is due to at least two fac-
tors: the finite number of observation points and the existence of small-scale
hydrological heterogeneity.

3.2.5 Subjective observations

Observations by local farmers and citizens offer an alternative form of data where
hydrological conditions are otherwise ungauged. A local farmer may for example
observe that the “creek on his land dries out every summer” or that his “spring
yields water only in wet years”. It is challenging to incorporate subjective ob-
servations into an automatic calibration procedure, but such information may
be very valuable.

3.2.6 Weighting of observations

If the aim in calibration is to incorporate different kinds of observations (e.g.
head and river discharge) and/or observations of the same kind with varying
levels of expected error, the observations have to be mutually weighted. The
standard procedure is to weight the observations according to the inverse of the
estimated error covariance matrix, V = C−1.

The correlation between observations is usually very difficult to determine and in
general observations are assumed to be uncorrelated. Positive correlation may,
however, be a useful tool in ensuring certain trends. In many situations, for
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example, it will be equally crucial to ensure a low average mean value of the
absolute head residuals and at the same time a high level of agreement between
the observed head gradients and simulated head gradients. A high degree of
positive correlation will ensure weighting of the gradients.

3.3 Ill-posedness

Well-posedness is a fundamental requirement in applying traditional calibration
procedures to a calibration problem. A well-posed calibration problem is defined
as one that has a parameter solution that is identifiable, unique and stable.

The solution is identifiable if it can be found from the observation set, and it is
unique if only one such solution can be found.

The solution is thus unique if one and only one set of models, parameters and
variables can be established from the set of observations. A necessary, but not
sufficient, requirement for uniqueness is that the number of models, parameters
and variables to be estimated is less or equal to the number of observations. The
observations have to be spatially distributed and preferably of different types
(e.g. head, stream flow, tracer, etc.).

The solution is stable if small changes in the observations produces small changes
in the parameter solutions. Instability often arises from the fact that the pa-
rameter solution is non-identifiable, or only poorly so. It is generally associated
with objective functions that are flat or nearly flat in the region around the pa-
rameter optimum. Unstable problems can result in parameter solutions that are
very sensitive to the starting point of the search (Carrera and Neuman 1986b).

A thorough description of (in)stability, (non-)uniqueness and (non-)identifiability
can be found in Carrera and Neuman (1986b) and Yeh (1986).

As the above indicates, ill-posedness thus depends on parameterisation - any
model can be rendered well-posed by reducing the number of parameters. One
should however bear Fig. 3.5 in mind.

Figure 3.5 shows the contributions to the total modelling error as a function
of the number of parameters involved. As the number of parameters increases
the error contribution from model error decreases, and the contribution from
parameter error increases. When the model in simplified in order to make the
calibration problem unique, there is a corresponding increase in the contribution
from model error.

Example 3.1 If we consider example 1.1 on page 7 again, and assume that only
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Figure 3.5: Contributions to the total modelling error as a function of
the number of parameters

head observations are present, this leaves us with two observations, h∗2 and h∗3,
and two unknowns, q and T . The first requirement of uniqueness is fulfilled (no.
of observations is greater than or equal to the no. of unknowns). However, the
problem is non-unique because only one type of observation (head) is present. An
infinite number of combinations of q and T will result in the same head distribu-
tion - only the ratio between q and T can be found. The problem becomes unique
if the river inflow estimate, Qr, is included. Alternatively we could consider q
as being deterministic and take only T as the target of calibration. By assuming
that q is known, we increase the amount of model error.

3.4 Non-linearity and discontinuity

Groundwater problems are in general non-linear. This non-linearity results from:
1) changing water levels in free reservoirs, leading to changes in cross section
area/transmissivity, 2) discontinuous or non-linear sink-source terms, 3) spatial
variations in the hydrogeological parameters in the flow domain and 4) threshold-
dependent processes such as groundwater pumping, drainage flow or surface flow.
Figure 3.6 illustrates a schematic aquifer system and the response of the head
potential in the lower aquifer as a function of the change of the hydrological
conductivity in the lower aquifer.

At low conductivities only a small amount of water will leave the model through
the lower aquifer. The model will instead generate surface flow, drain flow and
horizontal flow in the upper aquifer. As the conductivity increases the model
predicts a drop in the head potential in the lower aquifer and for large conductiv-
ities horizontal flow will only appear in the lower aquifer. In some conductivity
regions the head response (response surface) may be close to linear, while in oth-
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Figure 3.6: Example of head development in an aquifer due to changes in the conduc-
tivity - effect of threshold-dependent processes, discontinuous sink-source
terms, spatially varied hydrogeological parameters and transmissivity.

ers it will be strongly non-linear. A plateau and a valley in the response surface
are found at respectively low and high conductivity values.

This imaginary example illustrates a response surface that has a plateau, a valley
and varying degree of non-linearity. Furthermore the response surface is non-
differentiable in a number of points. These circumstances play an important
role in estimating parameters. Plateaus, valleys and a rapid change in the gra-
dient of the response surface may result in problems when using gradient search
methods for optimisation, and models are often linearised in order to stabilise
the optimisation: see e.g. Christensen et al. (1998). The subsequent estimation
of parameter statistics and the prediction of uncertainties are often based on
linearised estimates, which may be misleading for strong non-linear models.

3.5 Least square method

Non-linear least square methods are widely used for parameter estimation in
groundwater models (Cooley 1977; Cooley 1979; Hill 1992). The standard least
square parameter estimate results from a minimisation of

J(θ) = [ψ∗ −ψ(θ)]T C−1
ψ∗ [ψ∗ −ψ(θ)] (3.4)

where ψ∗ is the vector of observed state variables, ψ(θ) is the vector of com-
puted state variables given the parameter set θ, and Cψ∗ is the expected error
covariance of the observed state variables.
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If any prior parameter information exists Eq. 3.4 is expanded to

J(θ) = (z∗ − z)T C−1
z∗ (z∗ − z) (3.5)

where

z∗ = (ψ∗,θ∗)T

z = (ψ, θ̂)T

Cz∗ =
(
Cψ∗ 0

0 Cθ∗

)

θ∗ is the expected value of the prior parameter vector, Cθ∗ is the covariance of
the prior parameter estimate and θ̂ the parameter estimate.

Example 3.2 In example 1.1, page 7, we want to estimate q and T from the
observations ψ∗

2 , ψ∗
3 and Q∗

r including the prior information on q∗ and T ∗. From
the various sources of uncertainty described in section 3.2 the expected error of
ψ∗

2 , ψ
∗
3 and Q∗

r is estimated to σψ∗
2
, σψ∗

3
and σQ∗

r
. From example 1.1 we have the

prior information on q∗ and T ∗ (µ∗
q , σ

∗
q , µ

∗
T , σ

∗
T ). The transmissivity T is log-

transformed before estimation. If the observations and parameters are assumed
to be uncorrelated, the components of Eq. 3.5 are given as

z∗ = (ψ∗
2 , ψ

∗
3 , Q

∗
r, µq, µlnT )T

z = (ψ2(q̂, T̂ ), ψ3(q̂, T̂ ), Qr(q̂, T̂ ), q̂, T̂ )T

Cz∗ =

⎛
⎜⎜⎜⎜⎝
σψ∗

2
0 0 0 0

0 σψ∗
3

0 0 0
0 0 σQ∗

r
0 0

0 0 0 σq 0
0 0 0 0 σlnT

⎞
⎟⎟⎟⎟⎠

when inserted in Eq. 3.5 this gives

J(q̂, T̂ ) =
1
σψ∗

2

(ψ∗
2 − ψ2(q̂, T̂ ))2 +

1
σψ∗

3

(ψ∗
3 − ψ3(q̂, T̂ ))2 +

1
σQ∗

r

(Q∗
r −Qr(q̂, T̂ ))2

+
1
σg

(µq − q̂)2 +
1

σlnT
(µlnT − ln T̂ )2

(3.6)

The estimate of q̂ and T̂ are found by minimising Eq. 3.6.
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3.6 Maximum likelihood method

The maximum likelihood estimate is the conditioned density

pψ∗|θ (ψ∗|θ) = fψ∗|θ (ψ∗|θ) (3.7)

which is commonly called the likelihood function. fψ∗|θ (ψ∗|θ) is the joint prob-
ability density function of the observations. The maximum likelihood estimate is
a maximisation of Eq. 3.7. In some cases it is convenient to derive the maximum
likelihood estimate from a minimisation of the log-likelihood criterion

−2 ln pψ∗|θ (ψ∗|θ) (3.8)

If the residuals are assumed to be Gaussian distributed the likelihood function
becomes

fψ∗|θ (ψ∗|θ) = (2π)
N
2 | Cψ∗ |− 1

2 e(
1
2 (ψ∗−ψ(θ))TC−1

ψ∗ (ψ∗−ψ(θ))) (3.9)

if prior parameter information is included Eq. 3.9 becomes

fψ∗|θ (z∗|θ) = (2π)
N
2 | Cz∗ |− 1

2 e(
1
2 (z∗−z)TC−1

z∗ (z∗−z)) (3.10)

The parameter set found from minimising 3.10 corresponds to the parameter set
found from minimising the least square objective function.

3.7 Single versus multi-objective parameter es-
timation

Some criticism has been raised against using a single objective function in the
estimation of parameters. Yapo et al. (1998) state that “Practical experiences
with model calibration suggests that any single-objective function, no matter how
carefully chosen, may not adequately measure the ways in which the model fails
to match the important characteristics of the observed data.”

In order to overcome this problem the calibration problem can be formulated as
a multi-objective optimisation problem of F (θ)

F (θ) = f1(θ), f2(θ), ..., fm(θ) (3.11)

where f1(θ), ..., fm(θ) are objective functions to be simultaneously minimised
with respect to the parameters θ. fi(θ) might e.g. be the least square or maxi-
mum likelihood parameter estimate with respect to head observations and fj(θ)
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might be the parameter estimate with respect to river discharge observations.
A minimisation of the individual objective functions may result in parameter
solutions that are not unique and accordingly it is not possible to find the best
solution using objective methods.

Figure 3.7 illustrates a problem with two objectives (f1, f2) to be minimised with
respect to two parameters (θ1, θ2). Point A is the solution to minimising f1 and
point B is the solution to minimising f2

-1 0 1 2
-1

0

1

θ1 f1(θ)

f2
(θ
)

0 0.5 1
0

0.5

1
b) Objective spacea) Parameter space

B

A

θ
2

B

A

Figure 3.7: Illustration of Pareto optimality. After Yapo et al. (1998)

The solution to the multi-objective problem consists of all parameter combina-
tions on the line from point A to point B. Parameter sets close to point B will
result in a small of value of f1, and as they move towards point A f1 will decrease
and f2 will increase. Solutions on the line from A to B are called Pareto solu-
tions. (Yapo et al. 1998) All Pareto solutions are acceptable simulators of the
system, and the parameter range given by the Pareto solutions reveals the un-
certainty due to the choice of objective function. A thorough description of the
multi-objective approach and solution methods for minimising multi-objectives
can be found in Yapo et al. (1998).

Example 3.3 Let us consider the flow situation in example 1.1, page 7. Two
objective functions are formulated: 1) the least square measure of the head in
wells nos. 2 and 3:

Jψ(q̂, T̂ ) =
1

σψh∗
2

(ψ∗
2 − ψ2(q̂, T̂ ))2 +

1
σψh∗

3

(ψ∗
3 − ψ3(q̂, T̂ ))2 (3.12)

and 2) the least square measure of the river inflow:

JQr (q̂, T̂ ) =
1

σψQ∗
r

(Q∗
r −Qr(q̂, T̂ ))2 (3.13)
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The minimisation of Jψ and Jqr will lead to two estimates of q and T that
correspond to points A and B on Figure 3.7. If the two objectives are combined

Jψ,Qr (q̂, T̂ ) =ω(ψ∗
2 − ψ2(q̂, T̂ ))2 + (ψ∗

3 − ψ3(q̂, T̂ ))2

+ (1 − ω)(Q∗
r −Qr(q̂, T̂ ))2

(3.14)

and the weight, ω, is varied from 1 to zero, solutions on the Pareto front can be
found.

3.8 Parameter statistics

Parameter statistics can be analysed in case of linear models that have non-
biased and Gaussian residuals. The covariance of the estimated parameters can
be found from Bard (1974):

C(θ̂) =
J(θ̂)

Nobs −Npar

[
Ak(θ̂)

]−1

(3.15)

where

θ̂ estimated parameter vector
J(θ̂) least square error

Ak(θ̂) =
[
JD

(
θk
)]T [

JD

(
θk
)]

,(Npar ×Npar)

JD Jacobian matrix of state variable, ψ, with respect to parameters, θ, (M × L)

JD =

⎛
⎜⎜⎜⎜⎜⎝

∂ψ1
∂θ1

∂ψ1
∂θ2

· · · ∂ψ1
∂θNpar

∂ψ2
∂θ1

∂ψ2
∂θ2

· · · ∂ψ2
∂θNpar

...
...

. . .
...

∂ψNobs

∂θ1

∂ψNobs

∂θ2
· · · ∂ψNobs

∂θNpar

⎞
⎟⎟⎟⎟⎟⎠

Nobs number of observations
Npar number of parameters

The Jacobian is a local linear approximation of the response surface in the region
around the optimal solution, θ̂.

The size of the components of Ak is proportional to the number of observa-
tions and consequently the estimated parameter variation becomes (through Eq.
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3.15) inversely proportional to the number of observations. As the number of
observations increases the parameter error will diminish.

The linear confidence intervals for the parameter θi can be found (Hill 1992, p.
58: Seber and Wild 1989, p. 191-194):

θi ± t
(
Nobs −Npar, 1.0 − α

2

)
sθi (3.16)

where t
(
Nobs −Npar, 1.0 − α

2

)
is the Student-t statistic for Nobs−Npar degrees

of freedom and a significance level of α and sθi =
√
C(θi, θi) is the standard

deviation of θi.

Example 3.4 We now want to consider the statistics for the parameter estimate
described in example 3.2, page 45. From Eq. 3.15 we have the covariance of the
estimated parameters:

C =

(
σ2
q̂ σq̂σT̂

σq̂σT̂ σ2
T̂

)
=
J(q̂, T̂ )
3 − 2

[
Ak(θ̂)

]−1

(3.17)

where Ak(θ̂) = JD
TJD and the Jacobian matrix, JD, is given as

JD =

⎛
⎜⎜⎝

∂ψ2
∂q̂

∂ψ2

∂T̂

∂ψ3
∂q̂

∂ψ3

∂T̂

∂Qr

∂q̂
∂Qr

∂T̂

⎞
⎟⎟⎠ (3.18)

The 95% confidence intervals of q̂ and T̂ are

q̂ ± t (3 − 2, 0.975)σq̂

T̂ ± t (3 − 2, 0.975)σT̂
(3.19)

3.9 State variable statistics

Linear confidence intervals for any system state variables ψl are given as (Hill
1992 ,p. 58).

ψl ± t
(
Nobs −Npar, 1.0 − α

2

)
sψl

(3.20)

where sψl
is the standard deviation of ψl calculated from

sψl
=

⎡
⎣Npar∑
i=1

Npar∑
j=1

∂ψl
∂θj

Cθi,θj

∂ψl
∂θi

⎤
⎦

1
2

(3.21)
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where Cθi,θj are components in the covariance matrix for θ

Approximate linear prediction intervals are calculated as (Hill 1994 ,p. 32)

ψl ± t
(
Nobs −Npar, 1.0 − α

2

)(
s2ψl

+
s2r
ωl

)1/2

(3.22)

where sr is the calculated standard error of the regression and ωl is a weight that
equals σ2

r/σ
2
l , where σ2

r is the estimated common error variance of the regression,
and σ2

l is the measurement error variance associated with ψl. The error variance
of ψl is not usually known. Christensen and Cooley (1999) assumed that σ2

l

was spatially distributed proportionally to the variance of the observed head
measurements. Error in predictions becomes equally distributed according to
the assumed errors deriving from observation error.

Example 3.5 We now want to consider the statistics for the estimate of ψ1,
see example 1.1, page 7, and 3.2, page 45. From Eq. 3.21 we have the standard
deviation on ψ1

sψ1 =
∂ψ1

∂q
Cq,T

∂ψ1

∂T
+
∂ψ1

∂q
Cq,q

∂ψ1

∂q

+
∂ψ1

∂T
CT,q

∂ψ1

∂q
+
∂ψ1

∂T
CT,T

∂ψ1

∂T

(3.23)

From Eq. 3.20 the 95 % confidence intervals can be found

ψ1 ± t (3 − 2, 0.975) sψ1 (3.24)

3.10 Solving the regression problem

3.10.1 Gauss-Newton minimisation

The Gauss-Newton algorithm has often been used as a minimisation algorithm in
problems concerning the estimation of groundwater parameters. The algorithm
starts with an initial parameter vector θ0 and converges iteratively to a local
minimum. The local optimal parameter set is found from minimisation of (e.g.
see Yeh 1986)

θk+1 = θk − ρkdk (3.25)

with
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Akdk = gk (3.26)

where

Ak =
[
JD

(
θk
)]T [

JD

(
θk
)]

,(L × L);

gk =
[
JD

(
θk
)]T [

ψ(θk) −ψ∗
]
,(L× 1);

JD Jacobian matrix of state variable, ψ, with respect to parameters, θ, (M × L)

ρk scalar step size

dk Gauss-Newton direction vector

Nobs number of observations

Npar number of parameters

A description of the modified Gauss-Newton Optimisation Method, including
weighted residuals, can be found in Hill 1992, p. 76-82.

3.10.2 Other methods

An alternative to the Gauss-Newton minimisation is offered by global random
search methods, where the parameter space is sampled randomly and global
parameter set/sets are estimated on the basis of one or more objective functions.

Other algorithms combine local search methods with random search methods.
The Multi-Objective Complex Evolution (MOCOM-UA) method (Yapo et al.
1998) and the shuffled complex evolution (SCE-UA) method (Duan et al. 1992)
are examples of such methods. Madsen and Kristensen (2002) applied UCODE
(inverse programme for Gauss-Newton minimisation) and the SCE-UA method
on a MIKE SHE application and found that “The UCODE solutions were trapped
in local optima far from the Pareto front. Even when the initial parameter set
was close to the Pareto front, UCODE failed to converge into a Pareto optimal
solution.”
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