Advection, diffusion and dispersion

Advection

Transport with pore water (plug flow)

Advection, diffusion and dispersion

Diffusion

Spreading due to gradient in concentrations

Advection, diffusion and dispersion

Dispersion

- Spreading due to:
 - pore to pore variation in velocity
 - velocity variation within the pores
 - spreading due to incomplete knowledge regarding geological heterogeneities, source strength, source location, locale flow pattern, etc.

$$\mathbf{q}_{\scriptscriptstyle M} = -D_{\scriptscriptstyle M} \, \frac{\partial c}{\partial x}$$
 Concentration gradient Mechanical dispersion coefficient

 $D_{M} = \alpha \cdot v_{a}$ Pore velocity

See a list of field-scale dispersivities in appendix D.3

Field dispersivity

$$\alpha_L \approx \frac{1}{10}$$
 travel distance

See a list of field-scale dispersivities in appendix D.3

(Travel length)

Solution of the 3D advection-dispersion equation

$$\frac{\partial}{\partial x_{i}} \left(D_{ij} \frac{\partial C}{\partial x_{j}} \right) - v_{a,i} \frac{\partial C}{\partial x_{i}} + S_{n} = \frac{\partial C}{\partial t}$$
Dispersion and diffusion

Advective in/outflow

Change in storage

Source/sink (decay, sorption, etc.)

- Standard finite difference methods
- Particle based methods (MOC, MMOC, HMOC)
- High order FD or FV methods (TVD)

Standard finite difference methods

$$R\theta \frac{\partial C}{\partial t} = -\frac{\partial}{\partial x} (\theta v_x C) - \frac{\partial}{\partial y} (\theta v_y C) - \frac{\partial}{\partial z} (\theta v_z C) + L(C)$$
storage advection dispersion

Only good for transport problems not dominated by advection

High order FD or FV methods (TVD)

$$C(0,0) = C_j$$
, at $x = 0$
 $C(-2\Delta x,0) = C_{j-2}$, at $x = -2\Delta x$
 $C(-\Delta x,0) = C_{j-1}$, at $x = -\Delta x$
 $C(\Delta x,0) = C_{j+1}$, at $x = \Delta x$

Third-order polynomial

$$C(x,0) = a + bx + cx^2 + dx^3$$

where

$$a = C_{j}$$

$$b = \frac{1}{\Delta x} \left(\frac{C_{j+1}}{3} + \frac{C_{j}}{2} - C_{j-1} + \frac{C_{j-2}}{6} \right)$$

$$c = \frac{1}{2(\Delta x)^{2}} \left(C_{j+1} - 2C_{j} + C_{j-1} \right)$$

$$d = \frac{1}{6(\Delta x)^{3}} \left(C_{j+1} - 3C_{j} + 3C_{j-1} - C_{j-2} \right)$$

Methods of characteristics (MOC)

Advection → particle-tracking techniques

Dispersion → finite-difference techniques

Advection

Number of particles within cell m

$$C_m^{n^*} = \frac{1}{NP_m} \sum_{p=1}^{NP_m} C_p^n \quad \text{if} \quad NP_m > 0$$

Concentration of the p^{th} particle at the old time level n

Concentration in cell m at the new time level n^*

Particle tracking

TRANSPORT REGIME (t = 0)

source

direction of flow

NUMERICAL APPROXIMATION (PARTICLE DISTRIBUTION at t > 0)

Advective transport

$$\Delta x = v_{xa} \Delta t$$

$$\Delta y = v_{ya} \Delta t$$

Dispersive transport in flow direction

$$P_L = \pm Z_1 \sqrt{2D_L \Delta t}$$

Dispersive transport transverse to the flow direction

$$P_T = \pm Z_2 \sqrt{2D_T \Delta t}$$

where

 $D_L = Iongitudinal dispersion coef. [L²/T]$

 D_1 = transverse dispersion coef. [L²/T]

 $Z_{1,2}$ = independent unit Gaussian random numbers [-]

Particle tracking

INDIVIDUAL RANDOM PATHS - INFLUENCE OF AQUIFER DISPERSIVITY

REALIZATION OF ADVECTIVE AND DISPERSIVE TRANSPORT

PARTICLE DISTRIBUTION COUNTED ON A RECTANGULAR GRID AT TIME t

	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	1	2	0	0	0	1	1	0	0	0	0	0	0	0	0
	0	0	1	0	0	1	2	3	1	1	2	4	1	1	2	3	1	1	0	0	0
	0	2	2	3	2	3	4	11	14	16	9	11	10	5	2	4	2	3	1	0	0
	0	1	3	8	4	11	14	16	14	33	19	27	32	12	9	8	6	4	2	0	0
	0	1	2	5	13	14	24	27	30	54	50	49	46	-	-	20	7	5	3	1	0
φ	0	1	5	3	9	20	21	_	_		60	-	-	-	-	25	8	4	2	0	0
	0	2	3	7	6	16	19	_			44	-	-	31	13	16	11	6	3	1	0
	0	1	1	2	4	9	12	20	22	24	21	33	27	22	13	5	2	4	0	2	0
	0	1	2	0	1	3	5	6	14	10	9	8	12	7	5	4	1	2	0	0	0
	0	0	0	0	0	0	2	1	5	2	1	1	1	3	2	3	2	1	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Solution options

Group	Solution Options for Advection ¹	Solution Options for Dispersion, Sink/Source, and Reaction ¹
А	Particle-tracking-based Eulerian-Lagrangian methods • MOC • MMOC • HMOC	Explicit finite-difference method
В	Particle Tracking Based Eulerian-Lagrangian Methods • MOC • MMOC • HMOC	Implicit finite-difference method
С	Explicit Finite-Difference Method • Upstream weighting	Explicit finite-difference method
D	Implicit Finite-Difference Method Upstream weighting Central-in-space weighting	Implicit finite-difference method
E	Explicit 3 rd -order TVD (ULTIMATE)	Explicit finite-difference method
F	Explicit 3 rd -order TVD (ULTIMATE)	Implicit finite-difference method

Numerical errors in FD models

Truncation error: neglected high order terms in the

numerical formulation

Roundoff error: limitation of the computer to

represent digits.

Oscillations: coarse discretization in time and

space in relation to large gradients in

concentrations.

Instability: error will grow as each succeeding

step (iteration or time step)

Iteration residual error: The error that remains when the

iteration convergence criteria are

fulfilled $\left|c_i^{k+1}-c_i^k\right| \leq \varepsilon$

Distance-related numerical dispersion

contaminant plume direction of flow

- The cell size is the smallest resolution of the contaminant concentration – contaminant at a smaller scale will be dissolve on a cell basis
- When the contaminant front has reach the edge of an cell the entire cell is contaminated

Angular-numerical dispersion

• Angular flow is resolved in x,y and z flow-components and since there is an instant dilution of contaminant in the numerical cells we will obtain an artificial spreading'.

Controlling numerical errors

Peclet criterion:

controls the spatial discretization Dx in respect to porewater velocity, v_a and dispersivity, D_{xx} on a cell basis

$$Pe_{xi} = \frac{v_{a,xi} \Delta x_i}{D_{xxi}} < 1$$

Courant criterion:

controls the temporal discretization Dt in respect to porewater velocity, v_a and spatial discretization, Dx on a cell basis

$$Co_x = \left| \frac{v_{a,x} \Delta t}{\Delta x} \right| \le 1$$

$$Co_y = \left| \frac{v_{a,y} \Delta t}{\Delta y} \right| \le 1$$

$$Co_x + Co_y \le 1$$

Controlling numerical errors

Neumann criterion: restricts the dispersive flux within a time step

$$\frac{D_{xx}\Delta t}{\Delta x^2} + \frac{D_{yy}\Delta t}{\Delta y^2} \le 0.5$$

Other conditions:

- Orient the grid along main flow direction
- Gentle discretization in time and space
- Refine grid in the plume area
- Decrease time step