Advection, diffusion and dispersion
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« Transport with pore water (plug flow)
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Advection, diffusion and dispersion

Diffusion

e Spreading due to gradient in concentrations

OC
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Concentration gradient
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Advection, diffusion and dispersion

Dispersion

o Spreading due to:

* pore to pore variation in velocity

e velocity variation within the pores

 spreading due to incomplete knowledge regésding
geological heterogeneities, source strength, source

location, locale flow pattern, etc.
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« Pore velocity
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Dispersivity
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See a list of field-scale dispersivities in appendix D.3




Field dispersivity
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Solution of the 3D advection-dispersion equation
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Advective in/outflow Change in storage

Dispersion and diffusion
Source/sink (decay,

sorption, etc.)
o Standard finite difference methods
o Particle based methods (MOC, MMOC, HMOC)
* High order FD or FV methods (TVD)



Standard finite difference methods
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High order FD or FV methods (TVD)

v - Third-order polynomial
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Methods of characteristics (MOC)

* /: ) * Advection = particle-tracking techniques
=
° “’/”’-X/ * Dispersion =» finite-difference techniques
e
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Advection
Number of particles within cell m
e 1 /
e :cmp if NP, >0

m p=1 \
Concentration of the pt" particle at the old time level n

Concentration in cell m at the new time level n*



ParthIe traC kl ng Advective transport

TRANSPORT REGIME (t = 0)
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Dispersive transport in flow direction

P =+7 2D, At

- direction of fl
NUMERICAL APPROXIMATION (PARTICLE DISTRIBUTION att > 0)

t4>0
Dispersive transport transverse to the flow
direction
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where

e D, = longitudinal dispersion coef. [L?/T]
D, = transverse dispersion coef. [L?/T]
Z,,= Independent unit Gaussian random

ta>ta numbers [-]




INDIVIDUAL RANDOM PATHS - INFLUENCE OF AQUIFER DISPERSIVITY
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Solution options

Table 1
Solution Options Available in the MT3DMS Code
Solution Options for
Solution Options for Dispersion, Sink/Source,
Group Advection' and Reaction'
A Particle-tracking-based Eulerian-Lagrangian methods | Explicit finite-difference
e MOC method
¢« MMOC
e HMOC
B Particle Tracking Based Eulerian-Lagrangian Methods | /mplicit finite-difference
e MOC method
e MMOC
e HMOC
C Explicit Finite-Difference Method Explicit finite-difference
o Upstream weighting method
D Implicit Finite-Difference Method Implicit finite-difference
o Upstream weighting method
¢ Central-in-space weighting
E Explicit 3°-order TVD (ULTIMATE) Explicit finite-difference
method
E Explicit 3" -order TVD (ULTIMATE) Implicit finite-difference
method
' New options are showing in italics.




Numerical errors In FD models

Truncation error:

Roundoff error:

Oscillations:

Instability:

Ilteration residual error:

neglected high order terms in the
numerical formulation

limitation of the computer to
represent digits.

coarse discretization in time and
space In relation to large gradients in
concentrations.

error will grow as each succeeding
step (iteration or time step)

The error that remains when the
iteration convergence criteria are
fulfilled

Cik+1 _Cik < c




Distance-related numerical dispersion

Naturée
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Angular-numerical dispersion

tNature: FD Model
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Controlling numerical errors

Peclet criterion:

Courant criterion:

v, At
Co, ="
AX
V, At
Co, ="~
Ay

Co, +Co, <1

<1

controls the spatial discretization Dx in
respect to porewater velocity, v, and
dispersivity, D,, on a cell basis

controls the temporal discretization Dt in
respect to porewater velocity, v, and
spatial discretization, Dx on a cell basis



Controlling numerical errors

Neumann criterion: restricts the dispersive flux within a
time step

D At
DXX?t+ ¥ -<05
AX Ay

Other conditions:

= Orient the grid along main flow direction
» Gentle discretization in time and space
= Refine grid in the plume area

= Decrease time step
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