Contamination sources

POINT SOURCES

= underground storage facilities

- landfills and hazardous waste disposal sites
= surface impoundments

- illegal disposal of waste or toxic chemicals
= industrial areas

« seplic tanks

transportation spills and accidents
injection wells and boreholes

urban storm-water runoff into sinks
unplugged oil and gas wells

LINE SOURCES

|
g

urban areas

Spitz and Moreno, 1996




Why does contaminants spread

Point injection of a tracer

\ Lateral tracer /
distribution at
two distances
{a)
Tracer boundaries




Spreading processes

» Advection

* Dispersion

» Diffusion

« Sorption

» Chemical reactions

* Diffusion between mobile and immobile water



Why does contaminants spread
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Advection

g q K dh

"0 Te, T 6, d

V, = pore water velocity [L/T]

q = Darcy flux [L/T]

K = hydraulic conductivity [L/T]

n, 0, = effective porosity [-]
dh/dl = hydraulic gradient [L/L]

Advective flux

q, =q9C=v CCy

C = solute concentration [M3/L3]



Diffusion flux

Flux of solutes from a zone with higher concentrations to a zone of
lower concentrations =»Ficks first law

oc
="
D, = diffusion coefficient L2T-
C = Solute concentration ML-3

Jo = diffusive flux MT-"



Mechanical dispersion

» Spreading due to pore to pore variations of the
velocity field

» Spreading due to variations in the velocity field
within the pores.

» Spreading due to incomplete knowledge
regarding geological heterogeneities, source
strength, source location, locale flow pattern, etc.

General assumption q,, =-D,, dc

dx



Variations in the flow field — point scale

Longitudinal dispersion

Longitudinal dispersion
(1D flow)

DM,L =a,v,

a, = Longitudinal dispersivity [L]

v, = Pore water velocity [L/T]

a



Variations in the flow field — point scale

Lateral dispersion

Lateral dispersion coefficient
(1D flow)

DM,T =arv,

a; = Lateral dispersivity

v, = Pore water velocity




“Dispersion like” processes

Temporal flow variation

L

Geological iIregular'rties

// Aquifer heterogeneity

Limitation of data

Figure 3.6 Factors which are likely to be interpreted as dispersion.



The dispersion processes are introduced
because of incomplete description of
advective flow ...

=» scale dependent
=» “knowledge” dependent



Field dispersivity

longitudinal/transverse dispersivity in m
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Dispersivity

ajjx, = 4.order tensor

Is often reduces to

a, = longitudinal dispersivity

ary = lateral dispersivity in the horizontal plane
ar, = lateral dispersivity in the vertical plane
or simply

a, = longitudinal dispersivity

ar = lateral dispersivity



Dispersion coefficients

Hydrodynamic dispersion coefficients (3D flow)

D, D,y D,, = principle components in the

2 2 2
% % . : : i
D_=a, *“+a,, %Jr ap, V_+ D dispersion tensor, L2T-1
, , ) D,y Dy, + Dy, Dy, D,y D,y = Cross components in
1% 1% 1% . ' ' 2T-1
D, =q, W g, ey g Yo p the dispersion tensor, LT
A% 1% \% . . . .
“ @ a a, = longitudinal dispersivity, L
2 2 2
1% 1% v, . _ , : L
D_=a, “5+a, —+a,, —r+D ary = horizontal lateral dispersivity, L
va a Va

ar, = vertical lateral dispersivity, L

Va,xva, * . . . _
D, =D, =(a,-ay) § : D* = effective molecular diffusion coefficient, L2T-1
- Vax Vays Vaz = components in the pore water
D_=D_=(a, —a, )2 velocity vector, LT
) | v,| =length of the velocity vector, LT-




Exercise

Spreading due to dispersion in a uniform stationary flow

The concentration plume that originates form a point injection follows a normal
distribution with

o, = /2Dt
or=-/2D,t

A monitoring program is set-up 1000 m down stream

Calculate s; and s; at the monitoring station 1000 m down stream given:

o, =10m
o, =1m
v, =0.1 m/day

What is s, and s; at the monitoring station if

v, =0.5m/day



Dispersion flux (1D flow)

Fick’'s law
dC
ap=-D,
y bdx
D, = Longitudinal dispersion coefficient L2T-
C = Solute concentration ML

Dispersion and diffusion flux (1D strgmning)

dC
—_D
qy N
C = Solute concentration ML-3
D, = Longitudinal hydrodynamic dispersion coefficient L2T-

Dh :DL +DO =0€Lva +DO



Total flux

Advection + dispersion (1D flow)
dC
Qt =9C =D, ;
X

Ot = Total flux MT-1L-2
q = darcy velocity LT



Total flux

advection + dispersion (3D flow)
qtotx :qu_Dxxcm_Dx d(j_szd(j
’ dx " dy dz



Governing equation

1D advection-dispersion equation

96Cc  9%0C o, C
81 ax2 ax

D, S

D, = longitudinal hydrodynamic dispersion coefficient, L2T-
C = solute concentration, ML

v, = Pore water (transport) velocity LT

S = sink/source due to sorption or decay, ML-3T-"

t =time, T



Governing equation

3D advection-dispersion equation
06y, C
00C @ [eD aCJ_ e

ot Ox, / Ox Ox,

S

D, = components in the hydrodynamic dispersion tensor, L2T"
C = solute concentration, ML-3

vV, = components in the pore water velocity vector LT

a

S = sink/source due to sorption or decay, ML-3T-"

R. = chemical reactions, ML-3T-"

n

t =time, T



Sorption as a sink/source term, S

oC
S =- a
i pb 8t
r, = bulk density, ML
C, = adsorbed concentration, MM-
odv C
00C _ 0 (gp 0C | 0%,C|  oC,
ot Ox, " Ox, ox, Ot
U
odv C
00C |, 0C,|_ 0 (g, OC | _20v.,
Ot ot | Ox, " Ox, Ox,
U
ROCL 0 [y 0C| 0,.C
ot | Ox, ! Ox, ox,

oC
where R=1+ '[;”(,)C (Retardation factor)



Sorption
Equilibrium controlled sorption

Linear sorption

oC.

R:1+'0b:1+’0bKd
0 oC

6
where

K4 = distribution coefficient [L3M1] C_=K, C

Numerical implementation

oC Ci’?J'r,lk B Ci}? ik
RO = R =




Sorption

Non-equilibrium controlled sorption

oC | oy, C
/ 8xj Ox,

l

irst order mass transfer rate between dissolved and sorbed
ases, T

distribution coefficient for the sorbed phase
Numerical implementation

n+l n n+l
Ca,i,j,k _Ca,i,j,k _ crlo_ Ca,i,j,k
d(i,j,k)

1
crl
_ n+l1 a,i,j,k
Si - ﬂi,j,k(c'

i,],k o
Kd(i,j,k)




Decay/degradation

first order

«—  ——— Decay of dissolved solute
S, = (ﬂﬂC%— ﬂ’2lobca) y
—_ — Decay of sorbed solute

|, = first order reactions rate for dissolved solute, T-

|, = first order reaction rate for sorbed solute, T

A = (ln 2)/ t%
T, = halflife, T

Numerical implementation

Sl — _ﬂ“lel,]:kcl,],k j./2;)b(lL]ak)cja’l"]’k



Dual porosity systems

— fractures — mobile water, C,, 6,,

— Matrix — immobile water, C,_, 6.

S~ \

m

00 C 06 C. 0 oC o0,v,,C,
m m _|_ m m — ele m _ s
Ot Ot Ox, ' Ox, Ox,
00. C.
m = im . _ C _C-
. ¢(c,-c,)

¢ = Mass transfer rate between mobile and immobile water, T



Dual porosity systems

00,C, [00,C,]_ o[, ) 2C, | 20.v.C,
l ' Ox, Ox,

Numeyical implementation

n+l n
Cim(i,j,k) - Cim(i,j,k) B é/(Cn—l—l _cm )
imAi, j k) At _ m(i,j,k) im (i,j,k)

o n+l1 n+l1
Ri — é,(Cm(i,j,k) B Cim(i,j,k))




Solution of the 3D advection-dispersion equation

o, ec), e ¢ _ac
ox, | 7 ox, " Ox, ol

» Standard finite difference methods

» Particle methods (random walk)

* Hybrid methods (MOC)

« High order FD or FV methods (TVD)
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