Conceptual model

The **user interpretation** of the most important hydrological processes and geological conditions.

The users survey and delimitation of what is necessary to include in the succeeding numerical simulations.

Conceptual model

- 0. Objective of the model set-up
- 1. Delineation of the model area
- 2. Description of the hydrological processes
- 3. Construction of the geological model
- 4. Determination simulation periods steady state / transient model?
- 5. Parameterisation
- 6. Description of available data for calibration and validation
- 7. Mapping of uncertainties in relation to point 1-6

0.Objective of the model set-up

Why is the model constructed?

- Transport and spreading of a gasoline spill?
- Long-term influence of water abstraction on e.g. stream flow?
- Transport and spreading of compounds from a waste dump?
- Determination of the temporal and spatial distribution of netprecipitation?
- Determination of the precipitation-depended washout of compounds form the unsaturated zone?
- Etc.

1. Delineation of model area – a search for good BC's

Boundary conditions:

- 1. Known pressure (Direchlet)
 - ocean, inlet, "large" lakes, rivers (large), measured groundwater potential
- 2. Known gradient /flux (Neumann)
 - streamline, geological water divide (no-flux), hydrological water divide (no-flux),
 - "topographical water divide (no-flux)", salt water interface (no-flux),
 - inflow from adjacent reservoir, rivers, streams.
- 3. Pressure-depended flux
 - Water abstraction rivers, stream, lake, infiltratin

Model delineation from terrain, rivers and groundwater potentials

1. Delineation of model area (horizontal)

Hydrological catchment

Hydrological sub-catchment

Potential curve (constant pressure level)

Streamline (perpendicular to potential curve)

Rivers, head potential and terrain elevation around hjorring Abstraction_HV Locations.shp ▲ Shell Express (Metax) Statoil // Rivers Pot_map_point_hjorring.shp ▲ County measurements GEUS national database River support point Lakes Coastline Wetland other support point Pot_map_cont_hjorring.shp 2.5 - 5 7.5 - 10 / 10 - 12.5 12.5 - 15 15 - 17.5 17.5 - 20 / 20 - 22.5 22.5 - 25 **/** 25 - 27.5 **/ 27.5 - 30** 30 - 32.5 32.5 - 35 35 - 37.5 37.5 - 40 /40 - 42.5 **// 42.5 - 45**

Rivers, head potential and terrain elevation around hjorring

1. Delineation of model area (vertical)

- Fresh/salt water interface
- Geology (low permeable deposits)
- Flow systems

1. Delineation of model area (exercise)

Delineate - on the basis of a potential map – the model area for your project location. Construct a small model area (~a few km²) and a large model area

Specify boundary type.

Discuss the quality of the boundary conditions

Rivers, head potential and terrain elevation around hjorring Abstraction_HV Locations.shp ▲ Shell Express (Metax) Statoil // Rivers Pot_map_point_hjorring.shp ▲ County measurements GEUS national database River support point Lakes Coastline Wetland other support point Pot_map_cont_hjorring.shp 2.5 - 5 7.5 - 10 / 10 - 12.5 12.5 - 15 15 - 17.5 17.5 - 20 / 20 - 22.5 22.5 - 25 **/** 25 - 27.5 **/ 27.5 - 30** 30 - 32.5 32.5 - 35 35 - 37.5 37.5 - 40 /40 - 42.5 **// 42.5 - 45**

1. Delineation of model area

Large area:

- + Good boundary conditions
- + Closed water balance
- Large grid
- Data demanding
- Large numerical errors

Small area:

- + Limit data need
- + Small numerical errors
- + Description of small scale processes
- Uncertain boundary conditions
- Open water balance

2. Description of the hydrological processes

Estimation of net-precipitation

= precipitation – actual evapotranspiration

Estimation of evapotranspiration:

- Vegetation
- Soil type
- Reference evapotranspiration
 - Temperature
 - Global radiation
 - Wind speed
 - Relative humidity
- Depth to groundwater
- Water contents in unsaturated zone

2. Description of the hydrological processes

Estimation of net-precipitation (water balance approach)

Precipitation = Evaporation + Transpiration + Runoff + Abstraction

+ ΔStorage

 $P=E+T+R+A+\Delta S$

or

 $P-E-T=R+A+\Delta S$

Average annual precipitation

Fig. 6.2.3 Korrigeret års middelnedbør for år 2005.

Average annual reference evapotranspiration

Fig. 6.3.2 Årsmiddel potentiel fordampning for Nordjyllands Amt i 2005

Fig. 6.6.2 Arsmiddelafstromning i mm for vandlob i Nordjyllands Amt for år 2005